Anatomy of the Femur Bone: The Pillar of Support for the Human Skeleton

Femur

Introducing the most Massive and Strongest (in most ways) Bone in the Human Body

There are 62 bones in the legs: 10 trunk/hip bones, 14 ankle bones, and 38 foot bones. The femur (thigh) is the largest and strongest of these bones. Most land mammals capable of jumping also have femur bones, also lizards, frogs, and other tetrapod vertebrates. Its length on average is 26.74% of a person’s height, a ratio found in both men and women and most ethnicities with only restricted variation.

A Few Femur Bone Stats

  1. the Femoral neck sits at a 125 degree angle
  2. Femurs can resist 1,800-2,500 pounds of stress
  3. Vehicular accidents are the primary cause of breakage

The Greater Trochantergreater_trochanter_grays

The Great Trochanter is a large, irregular, quadrilateral eminence on the upper portion of the femur bone. This portion of the bone has several, extremely important muscle insertions for the thigh and hip bones:

The lateral surface, quadrilateral in form, is broad, rough, convex, and marked by a diagonal impression, which extends from the postero-superior to the antero-inferior angle, and serves for the insertion of the tendon of the gluteus medius.

Above the impression is a triangular surface, sometimes rough for part of the human_ape_femurstendon of the same muscle, sometimes smooth for the interposition of a bursa between the tendon and the bone. Below and behind the diagonal impression is a smooth triangular surface, over which the tendon of the gluteus maximus lies, a bursa being interposed.

The medial surface, of much less extent than the lateral, presents at its base a deep depression, the trochanteric fossa (digital fossa), for the insertion of the tendon of the obturator externus, and above and in front of this an impression for the insertion of the obturator internus and superior and inferior gemellus muscles.

Reference: (https://en.wikipedia.org/wiki/Greater_trochanter)

The Lesser Trochanter

The Lesser trochanter is on the underside of the femoral head and also has several muscular insertions: The Psoas Major on bottom and the Illiacus on top.

The Femoral HeadFemur_insertion_point

The Femoral Head is the highest part of the femur bone, support by the femoral neck. It inserts as a ball/socket joint into the Hip/Ilium via the structure depicted to the right.

The Femoral Neck

The Femoral neck usually sits at a 120-135 degree angle with some variation. A fracture of this area is known as a hip fracture and happens during aging. This structure supports the head of the femur bone and its insertion into the hip.

femur_pic_grays_2The Femoral Body

The Shaft of the femur is somewhat curved and has a protruding ridge called the linea aspera (rough line). The area of the bone supports the strongest muscle tissue in the body, including the hamstrings, Quadriceps, and thigh musculature. The Vastus Laterallis (outer quadricep) and adductor magnus (inner thigh muscle) connects into the linea aspera.

Lower Portion of the Femur

lower_femur_graysThe Lower portion of the femur bone consists of two condyle (from the Greek word for knuckle), lateral and medial that create the surface for the upper tibia bone and the knee-joint. Coated meniscus tissue layers on top of the bone and provides synovial fluid for frictionless movement within the knee. The medial (inside) condyle is the larger than the lateral due to its increased weight-bearing. 

How the Femur Bone affects your Holistic Health

Femur bone fractures correlate with increased disease in the elderly. It is safe to say that the femur bone is an organ that houses much of the mineral deposits for the body. Therefore, as we age and the bone tissue become more porous, this bone become one of the primary areas of decomposition.

One of the primary aspects of bone health is acquiring enough calcium to maintain bone density. Most calcium is available via leafy green vegetables, notably kale, bok-choy, and broccoli. Sodas and carbonated beverages make it harder for the body to absorb calcium and should be avoided by those with osteoporosis (orthoinfo.com). Vitamin D is an important catalyst for absorbing calcium into the bloodstream.

Phosphorus is another vital nutrient to maintain bone health. Nuts, Sesame Seeds, peanut butter, parsley, crab and prawns are all foods high in phosphorus. Don’t feel like you have to eat meat or drink milk to get these essential nutrients.

References:
  1. https://en.wikipedia.org/wiki/Femur_neck
  2. https://en.wikipedia.org/wiki/Greater_trochanter
  3. https://orthoinfo.aaos.org/en/staying-healthy/calcium-nutrition-and-bone-health

What Does Cold Weather do to Your Body?

Cold 1936_Pneumonia_prop_strikes_like_a_man_eating_shark

Cold Weather and Lower Temperatures Affect the Human Body

The Human Body is made to deal with the Cold

Cold Temperatures stress the body, but the human body is meant to adapt to colder conditions. You see, low temperatures stress the body; but in a way, it is a very psychological phenomenon. It happens in your mind. The way that you react mentally can have a big effect on how the stress of cold affects you. However, for this article we will discuss primarily the physiological response of the human body to low temperatures.

Over time, the body will adapt to colder conditions. Even brief exposure to low temperatures lead to increased levels of norepinephrine and cortisol, lymphocytosis, decreased lymphoproliferative responses, decreased levels of TH1 cytokines and salivary IgA, and increased lactate levels during exercise. It takes time for the body to de-stress itself in the cold.

Does Exercising Help in the Cold?

Exercising in the cold doesn’t seem to help too much. It can for a short period of time though. Just try not to sweat! Exercising exhausts the bodies energy reserves for immediate heat. Though in general, exercising is a good way to keep the immune system strong. Sweating also causes the body to lose heat quickly.

It seems that previous exposure to cold temperatures is one of the few things that helps the body to adapt. But acute exposure of the skin can have a huge effect on the body’s immune response, so be sure to keep your skin covered in colder temperatures until your body has adapted. They say it takes about 2-3 weeks for your body to adapt to those lower temperatures.

The Cold and the Human Heart’s Health

Cold weather and Cardiovascular Health

People die more often of heart and respiratory diseases in the winter. Vasoconstriction increases blood pressure during the bodies cold-stimulus response. The decrease in cellular plasma also creates a lot more work for your heart.

The Body’s Response to Cold over Time

Exposure to cold causes the sympathetic nervous system to heat the body by constricting blood flow to the extremities and superficial tissue. The body then begins to constrict the flow of the immune system, as well as the nervous system. As the nervous system restricts flow, the extremities lose blood flow until frostbite and more serious, permanent damage occurs.

Who do Mammals Shiver?

Why do you Shiver when it’s Cold Outside?

Over time, the blood pressure increases to cope and the body begins to shiver at a certain point. Once you are shivering heavily, you are at the point where you can get frostbite, or even hurt yourself because the body convulses so strongly. But this can also happen well above frostbite temperatures due to the body’s tolerance level. As people get older, they shiver less, which results in a more rapid drop of temperature upon exposure.

Here’s how Shivering works Neurologically:

Located in the posterior hypothalamus (brain) near the wall of the third ventricle is an area called the primary motor center for shivering. This area is normally inhibited by signals from the heat center in the anterior hypothalamic-preoptic area but is excited by cold signals from the skin and spinal cord. Therefore, this center becomes activated when the body temperature falls even a fraction of a degree below a critical temperature level.

Humans heat themselves Naturally by Burning Fat

Humans also have regulatory neurotransmitters and hormones to help the body burn fat for heat when the body is cold. This is primarily how the newborn and elderly bodies create heat. As we get stronger immune systems, the body shiver response gets stronger, apparently.

Injuries from cold temperatures:

frostbite, hypothermia, heart attacks due to decreased blood flow

References

  1. Human Responses to Cold
  2. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe

  3. The Association of Cold temperature and low humidity with increased occurrence of respiratory tract infections

  4. Exposure to cold and respiratory tract infections [Review Article]

  5. Cold Exposure Human Immune Responses and Intracellular Cytokine Expression
  6. Acute Cooling of the Surface of the Body and the Common Cold
  7. Immune Responses to Exercising in a Cold Environment

  8. Can Exercise Make Us Immune to Disease?
  9. Cross-Talk between the Immune and Endocrine Systems

Common Cold Wiki

No antibiotics, Cough Meds are BS… eat some candy:

Possible explanations may include temperature-induced changes in the respiratory system,[42] decreased immune response,[43] and low humidity causing an increase in viral transmission rates, perhaps due to dry air allowing small viral droplets to disperse farther and stay in the air longer.[44] The apparent seasonality may also be due to social factors, such as people spending more time indoors, near infected people,[42] and specifically children at school.[37][41]

There is some controversy over the role of low body temperature as a risk factor for the common cold; the majority of the evidence suggests that it may result in greater susceptibility to infection.[43] Herd immunity, generated from previous exposure to viruses, plays an important role in limiting viral spread, as seen with younger populations that have greater rates of respiratory infections.[45]

Poor immune function is a risk factor for disease.[45][46] Insufficient sleep and malnutrition have been associated with a greater risk of developing infection following rhinovirus exposure. Due to their effects on immune function.[47][48] Breast feeding decreases the risk of acute otitis media and lower respiratory tract infections among other diseases,[49] and it is recommended that breast feeding be continued when an infant has a cold.[50] In the developed world breast feeding may not be protective against the common cold in and of itself.[51]

Five of Yoga’s Heart Benefits (Heart Health)

Yoga's Heart Benefits

5 of Yoga’s Heart Benefits

Yoga’s Heart benefits are rather robust, ranging from increased circulatory function to decreased heart rate, to reduced cortisol levels in the bloodstream. Considering modern western yoga’s intensity, I think it is quite obvious that the longer duration vinyasa classes can have aerobic component to them.

Cardio-vascular disease affects more than 1 in 3 Americans, making it the most deadly disease in the United States. 600,000 Americans die of heart disease every year. Coronary Artery disease is the most deadly disease in the world.

Breathing through the nose helps to strengthen heart tissue, bronchial tubes, lung tissue, and the valves of the heart. Check out my previous article on breathing through the nose.

1. Cortisol (Stress) Regulation

“Cortisol is a steroid hormone that is produced and released by the adrenal gland and functions as a component of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. Hatha yoga promotes physical relaxation by decreasing activity of the sympathetic nervous system, which lowers heart rate and increases breath volume. We believe this in turn has a positive effect on the HPA axis,” said Curtis. (PsychCentral) Studies differ in talking about the role of yoga in regulating cortisol, but all agree that it helps with the regulation of stress hormones. It also helps in the way that stress is perceived having drastic effects on how stress is processed by the body. Yoga essentially helps these circulatory functions to achieve higher levels of function by increasing flow.

“Cortisol and the stress response have known deleterious effects on the immune system. High levels of perceived stress and increases in cortisol have been found to lengthen wound-healing time in healthy, male adults.”

2. Lower Blood Pressure

“Elevated blood pressure is a powerful predictor of congestive heart failure and other Cardiovascular Disease (CVD) outcomes” (Journal of Clinical and Diagnostic Research). Plaque builds up in the walls of arteries and makes it harder for blood to flow. Yoga helps to relieve this by increasing circulatory function through purifying the blood stream through oxygenation, which also helps with metabolism. Hypertension is one of the leading causes of stroke, which yoga has been clinically shown to reduce.

“Yogic practices significantly reduced systolic blood pressure, diastolic blood pressure, mean arterial pressure, and orthostatic tolerance.”

3. Improved Circulation

Circulation of hormones and various chemical messengers throughout the body is necessary for new tissue growth, tissue repair, and anti-inflammatory disease prevention. Myokines are excreted during muscle contractions, which could be a major reason why the increased duration of stretches is so beneficial for healing. During yoga, joints are used in full range of motion and articulation helping to soak them in new oxygen, blood, and nutrients, assisting with osteoporosis and arthritis.

“Yoga increases blood flow and levels of hemoglobin and red blood cells which allows for more oxygen to reach the body cells, enhancing their function.”

4. Lowering Cholesterol

Yoga helps to control cholesterol and hypertension. The relationship between the growth of plaque within arteries is still being explore in conjunction with yogic exercises, but several clinical studies have shown that yogic exercises reduce the speed at which the plaque builds-up, a process known as atherosclerosis.

5. Improved Heart Rate Variability

“There is also evidence that yoga practices help increase heart rate variability. Heart rate variability is an indicator of the body’s ability to respond to stress flexibly.” One of yoga’s heart benefits is the ability to perceive stress differently. This affects the entire hormone system, including the stress response system. We are continuing to learn more about how yoga benefits our bodies in this way.

5 of the Best Foods for Heart Health

  1. Salmon
  2. Blueberries
  3. Dark Chocolate
  4. Citrus
  5. Broccoli, Spinach, and Kale

Quotes about Yoga’s Heart Benefits

American Heart Association

“The more energy you put into it, the more you’re going to get out of it,” she said. “After 12 weeks, you may see a dramatic increase in exercise functionality, and blood pressure and cholesterol levels may decrease.”

American Osteopathic Association

“Between lowering blood pressure, increasing circulation, and lowering bad cholesterol, it’s no wonder that yoga helps to lower a person’s risk of heart disease.”

MedicineNet

“Your heart beats approximately 60-80 times per minute at rest.
100,000 times a day.
more than 30 million times per year.
and about 2.5 billion times in a 70-year lifetime!”

References:

  1. http://www.ijcep.org/article.asp?issn=2348-8093;year=2016;volume=3;issue=2;spage=57;epage=58;aulast=Pal
  2. https://www.hindawi.com/journals/ecam/2013/743504/
  3. http://www.scielo.br/scielo.php?pid=S0066-782X2009000600008&script=sci_arttext&tlng=en
  4. https://academic.oup.com/cardiovascres/article/38/2/332/299270/Effect-of-respiratory-rate-on-the-relationships
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978938/
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415184/
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573542/
  8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939525/
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193654/
  10. http://bmjopen.bmj.com/content/1/1/e000085
  11. https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-016-1286-7
  12. http://www.sciencedirect.com/science/article/pii/S2225411017300172
  13. http://www.osteopathic.org/osteopathic-health/about-your-health/health-conditions-library/general-health/Pages/yoga.aspx
  14. http://www.medicinenet.com/aerobic_exercise/article.htm
  15. http://www.heart.org/HEARTORG/HealthyLiving/PhysicalActivity/Yoga-and-Heart-Health_UCM_434966_Article.jsp#.WYDdWf_yvq0

Human Bone Anatomy | Osteology

human bone anatomy

What are Bones?

Bones are not inanimate rock like structures in the human body; bones are organs that produce red and white blood cells, store minerals, enable mobility, and provide structural support for the body. They are lightweight, strong, and hard, and function within the body in many different processes, including autoimmune function. , There are two types of mineralized osseous tissue, or bone tissue, cortical and cancellous, and gives the bones rigidity and a coral-like three-dimensional internal structure. Other types of tissue found in bones include marrow, endosteum, periosteum, nerves, blood vessels and cartilage.

Primary Nutrients

Most literature proposes Calcium and Vitamin D as the primary nutrients for healthy bones.

Calcium is important in bone creation and repair. Your muscles, organs, and nerves also need calcium to function properly; nerves use sodium to pump electricity through nerves in the form of action potentials. Calcium helps to keep these actions potentials from excessively firing by working in concert with GABA receptors, most notably in high intensity auditory transduction. (http://phys.org/news/2007-03-calcium-life-death-nerve-cells.html). Leafy greens, fish, and some fruits are great sources of calcium.

Vitamin D is a group of secosteroids responsible for intestinal absorption of primary nutrients such as calcium, iron, and zinc. Vitamin D is synthesized in the skin is the primary way that the body produces the nutrient; though it acts as a hormone because the nutrient travels to become active in the liver and kidneys. Vitamin D has a significant role in calcium homeostasis (balancing) and production in the kidneys and liver. It also affects neuromuscular and immune function.

Protein, magnesium, Vitamin K, and phosphorus are also suggested as beneficial nutrients for bone health.

Bone Structure

Bone tissue, bone marrow, blood vessels, epithelium, and nerves make up the different types of bone cells. Tissue includes Osteoblasts and osteocytes, which are involved in the creation and mineralization of bone; osteoclasts reabsorb bone tissue. The mineralized matrix of bone tissue has an organic component of mainly collagen called ossein and an inorganic component of bone mineral made up of various salts. Bone tissue refers bone_layer_imagespecifically to the bone mineral matrix that forms the rigid sections of the organ. There are two types of bones: cortical and cancellous. Cortical bone tissue create hard exteriors for protection while cancellous bone is more spongy and allows for the metabolic processes on the interior of the organ; the two are biologically identical, but the expression of their microstructures are specialized.

Bone marrow is flexible tissue and reproduces red and white blood cells as well as lymphocytes that support the immune system. Cores of marrow in the heads of long bones create about 500 billion red blood cells per day in hematopoiesis. 4% of human physiology is bone marrow; so about 5 pounds if you weight ~125. The body creates two types of marrow: red, the only type in the body at birth; and yellow, which increases in proportion during the aging process. Transplants can cure extreme diseases and is one of the primary reasons why stem cells can be so beneficial. The body stores marrow in the femur, hips, vertebrae, and ribs.

Osteo Factshttp://training.seer.cancer.gov/index.html

At birth, there over 270 bones in the body, which during the aging process turn into 206 by fusing together (joining). The biggest is the femur
(thigh) and the smallest is the stapes in the inner ear.  The hard cortical tissue (outer layer) comprises 80% of mass and networks of trabecular marrow comprise the rest. Bones are mineral reserves for the body and marrow stores fat. They are metabolically very active and work in tandem with the digestive system, immune system, and endocrine system in balancing nutrients, defending against disease, and releasing hormones, respectively. 22 bones fuse together after birth to form the skull. 26 aligned, specialized bones called vertebrae make up the spine, protect the spinal cord, and form the primary support structure for the body.

 

Aging and Osteoporosis

The problems arising from bones occur in osteoporosis, fractures, arthritis, tumors, and infections can affect the organic tissue. Fractures are breaks in tissue, from repetitive force or trauma. Aging causes osteoporosis; the body stops producing the necessary amount of building material for the body and literally means “holey bone” (porosis meaning hole). Tumors and malignancy’s can occur in various forms in bone tissue as well. This makes it much easier for the bones to fracture.

Cancer

Cancer can also occur in tissues structures and is a common site for it to metastisise to. Several primary cancers occur within the bones and some even within the marrow, such as Leukemia and multiple myeloma. The tissue distorted by cancer is normally more prone to fracture and weakness, which becomes particularly painful when it occurs in the spine.

References:

  1. http://orthoinfo.aaos.org/topic.cfm?topic=A00317
  2. https://en.wikipedia.org/wiki/Bone_marrow
  3. https://askabiologist.asu.edu/bone-anatomy
  4. https://en.wikipedia.org/wiki/Neuroregeneration
  5. https://www.nof.org/patients/what-is-osteoporosis/
  6. http://www.innerbody.com/image/skelfov.html

The Anatomy of Nose Breathing

nose breathing

Why is Nose Breathing Important?

Nose breathing is the most essential part of yoga. It is also poorly understood in modern culture. Breathing through the nose is nasal_cavityphysiologically much different than breathing through the mouth; there is far more space in your nasal cavity than in your mouth to start. There is also a filtration system in the nose that doesn’t exist in the throat. You can see this on the right; the tongue takes up the vast majority of the space in the mouth and the nasal passageway is very small at certain points. The mouth actually makes for a more narrow and less effective breathing passageway, especially when you consider the benefits of the pressure system that exists in the nasal cavity. Your body craves breathing through the nose, especially while you sleep! Human breaths are more powerful through the nose.

There are studies that have shown all kinds of benefits of breathing through the nose; it is even considered the proper method for breathing by the scientific community. “[Nose breathing] increases circulation, blood oxygen and carbon dioxide levels, slows the breathing rate and improves overall lung volumes ” Swift, Campbell, McKown  1988 Oronasal obstruction, lung volumes, and arterial oxygenation.

Breathing through the nostrils has also been proven to improve brain function; opposite nostril breathing stimulates the opposite hemisphere of cortex and the nervous passageways in the cortex (ie left nostril nasal cavity side viewbreathing is associated with stimulating right brain activity).

There is also significant research being done on the relationship between the prefrontal cortex and the passageways to the lungs. It is being shown that there are major correlations between ADHD and sleep disorders and breathing habitually through the mouth. Information beyond the clinical applications for sleep apnea where hard to find; obviously the health need ($$) for assistance with sleep apnea is somewhat sizable, therefore there is more research done around it. However, it has been proven that alternate nostril breathing affects the brain’s physiology; there are some extremely close relationships between specific portions of the brain and the respiratory pathways, especially in the hindbrain (medulla and pons).

There is an ever-increasing body of research on the relationship between sleep apnea, asthma, and on the negative effects of breathing habitually through the mouth. Nose breathing is more protective and efficient at fueling the human body’s need for oxygen; however, the passageway is relatively easily obstructed. The mouth has been shown to be more efficient at releasing carbon dioxide quickly than the nose, although exhaling through the nose has notable benefits for the mucus membrane and cilia of the nose. Let’s explore how the nose is a powerful filtration system for the lungs.

Filtration Systems

When I was 25 I visited Beijing with some of my friends from the time that I studied abroad in Paris. While I was there, I noticed myself continually nose breathing due to the large particles in the air. I was fairly deep into my yoga practice so I was used to breathing through my nose for long periods of time, but I instinctively understood that breathing through my nose would help to filter the air and keep the large bronchitis and cancer causing particles out of my trachea and mouth.

“The nose serves as the only means of bringing warm humidified air into the lungs. It is the primary organ nose breathingfor filtering out particles in inspired air, and it also serves to provide first-line immunological defense by bringing inspired air in contact with mucous-coated membranes that contain immunoglobulin A (IgA).”

The nose assists in stimulating the immune system. The changes in pressure stimulate the physiological processes associated with the maintenance of the mucus membrane and help to retain oxygen in the lungs. It also provides humidity and heat for the air entering the lungs, as well as increased filtration from the cilia and small hairs that line the nose. In the picture above, you can see the olfactory(smell) nerves and the organization of blood vessels within the nasal cavity. Overall, it is a good idea to concentrate on breathing through the nose, whether sleeping, awake, or even during milder forms of exercise.

Why is this important for yoga?

This information helps to explain a large portion of why yoga is so beneficial for the body. Breathing intensively through the nose for one to two hours creates space for the habit of constantly breathing through the nose. This is probably the biggest reason that in clinical studies, sleep quality of subjects who practice yoga is higher. Breathing’s relationship to the functioning of the brain is also interesting; some studies have shown that yawning helps to cool the brain, but the act of yawning is probably far more complex than that simple generalization.

Questions?

How does nasal breathing affect the hippocampus and memory?

How does nose breathing affect the hypothalamus and the regulation of your emotions through the endocrine system?

What parts of the brain does yawning cool?

What portions of the cortex received the greatest benefit from breathing through the nose? How about the mouth?

These questions, at least as far as I can tell, science has yet to answer. But we do have clinical evidence that yoga positively affects mood disorders, PTSD, anxiety, depression, and there are a lot of very positive findings between yoga and cardiovascular health, while simply nasal breathing is proven to positively affect the heart and lung tissue. It is probably just a matter of time before we discover more of the benefits of yoga and of nose breathing.

Don’t be a mouth breather! 🙂

 

References:

  1. http://emedicine.medscape.com/article/874771-overview
  2. http://onlinelibrary.wiley.com/store/10.1111/j.1398-9995.1999.tb04402.x/asset/j.1398-9995.1999.tb04402.x.pdf;jsessionid=AECDFA5F44190494D5E7B315E7A6FEB2.f01t03?v=1&t=ilmeorkg&s=c4bc17315db2cd2d969feca8ad933515fa409e02&systemMessage=Wiley+Online+Library+will+be+unavailable+for+up+to+3+hours+on+Saturday+19th+March+2016+from++11%3A00-14%3A00+GMT+%2F+07%3A00-10%3A00+EDT+%2F+19%3A00-22%3A00+SGT+for+essential+maintenance.++Apologies+for+the+inconvenience.
  3. http://care.american-rhinologic.org/nasal_physiology
  4. http://medind.nic.in/iad/t05/i4/iadt05i4p251.pdf
  5. http://www.ncbi.nlm.nih.gov/pubmed/8063359
  6. http://journals.lww.com/neuroreport/toc/2013/12040
  7. http://online.liebertpub.com/doi/abs/10.1089/acm.2005.11.711

Vegetable Protein Sources for the Average Vegetarian

vegetable protein

Vegetable Protein Sources

Vegetable protein isn’t hard to find. In fact, it’s probably already in your house, disguised. I am a pescetarian. I am not a vegan, but I was once. I stopped because it was too hard to stay healthy without eating tons of sugar and it was very difficult to avoid eggs and dairy products (especially goat cheese, that stuff is amazing).

It is extremely hard to be vegetarian in the United States. The system is literally working against the health of the American people; beef companies get huge subsidies, as do dairy farms and monoculture crops are the norm. This is the opposite of biodiversity, which is necessary for health gut bacteria (see the human body is an ecosystem part 4). I won’t even mention that animal agriculture is the cause of over 50% of the planet’s greenhouse gas emissions. I call myself a vegetarian, which isn’t wrong because pescetarianism is a branch of vegetarianism.

Let get to the good stuff; if we don’t eat meat, then where does our protein come from? The answer is vegetables. Consider for a moment that a 350 Lbs low-land gorilla eats almost exclusively leafy greens.

But what vegetables? Here the top 10 from most concentrated to least concentrated:

  1. Lentils & peas – eat lots of these, if you don’t already
  2. Soybeans – you probably already eat a lot of this
  3. Lima beans & corn – you probably eat a lot of this too…
  4. Kale – cook it to change the nutrient quality
  5. Broccoli – see above, can give you energy if you feel down (lots of B vitamins)
  6. Mushrooms – aren’t they great?
  7. Artichokes – yup
  8. Spinach – Popeye, duh
  9. Parsley – I exclusively drink this one…
  10. Potatoes & Carrots – always great!

Da fuq? All of the veggies have tons of protein. Is vegetable protein healthier? Why do I feel like I need meat?

Your body habituates itself to eating meat when it becomes a normal part of the day. After my first week of being vegetarian (at 24, after eating meat daily until that point…) I felt like I had to go back to eating meat and did. After a couple of weeks of eating meat, I realized that I didn’t like it as much and went back to vegetarianism and eventually hardcore veganism. Now I eat fish when its available and a little chicken here and there (probably once a month).

There is a very popular cultural myth in the United States that you need meat as a protein source. This is one of the health tragedies currently plaguing us, as hamburgers are cheaper than salads. For someone trying to be healthy, it really sucks. Besides, where do those enormous cows get all of their protein to grow far larger than humans? It’s in the vegetable protein. Grass. But if you are really serious about losing weight, you’ll do what I did. I didn’t eat sugar for about six months.

You’ll never see it advertised, but if you really want to lose weight, stop eating sugar and drink more water. It’s that simple. Don’t even worry about protein. I’m speaking from my personal experience in a world that will do anything to make you think you need more food to be healthy. If you’re American, less is probably best. And no, I’m not talking to any girls out there with anorexia. You should be trying to eat early in the morning to maintain healthy metabolism. Try salad for breakfast. Dieting is far more important that exercise for weight loss, especially once you are in good physical shape. Trust me, I’ve been fat and in amazing shape. There is a lot of truth to the myth that abs are made in the kitchen. The only part that’s a myth is that you need to do ridiculous amounts of abdominal exercises to have your abdominal muscles be visible. Or just do yoga twice a day for 3 months and weight lift a few times a week.

Limiting your meat consumption could be the healthiest thing you can do for your body today. The second could be a yoga class 😉

Another excellent source of protein that I didn’t mention is quinoa. I love the stuff and its full of protein, but it’s not a vegetable protein so it isn’t on the list. Stick to leafy greens and remember how much protein lowland gorillas get from eating leaves all day long.

 

Sources:
  1. Healthalicious
  2. Cooking Light
  3. Body Building
  4. Women’s Health
  5. Mind Body Green
  6. Livestrong
  7. No Meat Athlete
  8. Wikipedia

 

Yoga’s Primary Benefits: Control of the Autonomic Nervous System

Yoga's Primary Benefits_autonomic_nervous_sytstem

Yoga’s Primary Benefits

Honestly, yoga’s primary benefits are still unknown. Our science isn’t good enough yet. Not really. Science is just starting to catch up to the power of some of the world’s most ancient healing traditions and are learning their meaning in a whole new light. Yoga’s primary benefit  is certainly related to the functioning of the central and peripheral nervous systems, but how is something that has yet to be explained. The Ujjayi breathing technique, or breathing slowly through the nose is almost certainly related to yoga’s primary benefits; how is something that we have yet to learn. The Western world is slowly learning that the Eastern traditions, medicines, healing techniques, and ritualistic traditions are grounded in some serious observational science, even if it isn’t quantifiable and measurable by current methodologies and technologies. Even if the causes aren’t completely explained. This is happening in Acupuncture, herbology, nutrition, Ayurveda, and even Yoga is one particular field where we are learning a lot about how beneficial something as simple as breath control can be. The human body is more complex than we can currently understand; we are continually learning more about the human ecosystem that is what we define as our body.

Yoga is one particular tradition that reaches very far back in civilization, but our scientific knowledge about how yoga can help the body to heal is fairly rudimentary. We know from clinical studies that yoga helps with sleep duration and quality of sleep, we also know that it helps with anxiety, depression, and stress. But yoga in our modern society mostly means exercise, something that is vastly under-rated in American culture and in our society; 66% of Americans are overweight.

Yoga almost certainly has benefits to the endocrine system, the respiratory system, the circulatory system, the heart, and the digestive system, but many of these benefits have yet to be measured. Even our understanding of the functioning of the respiratory system is still somewhat archaic, especially in terms of the lungs interacting with the heart, especially in the paradigm of disease. We have a lot to learn, but another, even more powerful benefit that we are learning about is the control one gains over the nervous system.

Yoga and the Nervous System

The nervous system is the central source of energy for your body; the electricity in your body is the fundamental source of energy for your body and therefore your consciousness to exist. The electricity that runs down your spine and into your peripheral nervous system, or the legs, torso, arms, organs, and every other part of your body is a continually firing process that continues from before birth and ends with our final breath. This is what allows us to be alive and is the fuel for our internal fire, passion, love, and existence.

This nervous system that we have evolved into over billions of years is extremely adaptive; different aspects of it have partitioned and specialized; we have a parasympathetic part of the autonomic nervous system and a sympathetic part; a conscious part of the nervous system and an unconscious part of the nervous system.

Yoga and Stress Regulation

The parasympathetic autonomic system is largely outside of conscious control and regulates most of the “background activities” of the body, such as digestion, sexual activity and arousal, urination, etc. The sympathetic nervous system allows us to control our fight or flight response or panic responses. Yoga allows us to tap into both of these systems Yoga's Primary Benefit LiveScience_Nervous_Systemand influence their activities and awareness breeds control, making awareness of the proprioception of the nervous system a primary benefit as well. That’s why balancing in yoga is such an important part of the practice.

One of yoga’s greatest benefits that is also a byproduct of meditation is alleviation of tension from the muscles, cortisol from the bloodstream (stress hormone), and slowing down of the heart and therefore circulatory system. Control over the nervous system helps us to do this because it allows everything else to slow down as a result of slowing the mind, and allowing the body to reach equilibrium and decompress. This can help us to fully relax in preparation for strenuous activity and the two can balance each other out really nicely because of yoga’s benefit to slowing the nervous systems.

I’ve done yoga in airports, on airplane bathrooms, in buses, in random hotel rooms, in airplanes, in cars, in RV’s, while camping, after long days of strenuous activity, etc and I will always use it to keep my circulatory system “feeling good” while traveling. The benefits of yoga for the body are undeniable and we are just starting to learn about the real consequences of this powerful, healthy, spiritual, and enlightening practice.

 

sources:

  1. Wikipedia
  2. Live Science
  3. Ride the Breath

 

Adjusting Ashtanga

Ashtanga_Advanced_Series

I am a huge fan of the Ashtanga practice. The intensity, the discipline, the mindlessness, and the routine of the sequential practice makes it like a second home for me. I always know that there are mornings where I can wake up and work without thinking, push myself without thinking of how, breathing without having to plan for a destination. But there are some problems with practicing the Ashtanga practice exclusively.

The Ashtanga series were a prescription for Krishnamacharya’s Indian students, namely his most famous student Pattabhi Jois. Krishnamacharya made them specifically for 15-year-old Indian men that were training for hours each day and that didn’t have previous injuries, or probably a lot of other sports and exercise experience.

This means that Krishnamacharya had a specific purpose in creating this sequences for young and fit Indian men and that the sequence is optimized for the Indian skeleton and definitely not for the other types of human skeletons. This becomes especially apparent when westerners begin trying lotus pose, Kukkutasana, and the Marichyasanas.

So there comes a point when one starts to realize that certain poses simply aren’t good for their body. This is half-bound lotus pose for me. The reason is that my knees are simply not strong enough to stretch my hips as deeply as the stretch requires, even though my hips are very open and I have good alignment. At a certain point, we have to realize that the body is mechanical; it has very real limitations that you will sooner or later be coming into increased contact with.

In my first two weeks, I was injured in the Ashtanga sequence. Marichyasana B, I can remember the stress of feeling injured like it was yesterday, my lateral collateral ligament snapped and I heard a very audible pop while I was in the full pose with the bind. I quickly got out of the pose and finished my sequence, then went home to look up some rehab exercises for my knee. It took a couple of days of exercises and taking it easy to let my knee heal. Not a fun few days while I was healing.

I continued my full practice for the rest of the time in India, making adjustments and skipping poses when it felt right. I did some extra work to make sure my knee was stable and working properly and avoided walking too much to make sure that the joint was getting less stress. Slowly full lotus opened up for me while I was rehabilitating my knee, though there is still quite a bit of space left to create in my hips. The injury forced me to be more conscious of what I was doing, to not accept things as they were explained, in black and white.

What is the point of that story? Every body is unique, so how can one series work for everyone’s skeleton? It can’t.

I think that there are parts of the Ashtanga sequence that are almost perfect in their ideal succession, mainly the standing series of the primary series. There is something especially cleansing about doing the poses in that order, and the inversions at the end are simply magical.

Sunday, I taught my first class back in the states. It was great, it was easy to forget how much I love teaching yoga until I was in the room again with all the wheels turning. It was a hybrid style so we warmed up slowly, with a bit of flow including some low lunges complete with back-bends, and even an extended child’s pose. Then we moved into standing postures and the full Sun Salutation B sequence, holding warrior 1 for less and less time and getting into the full back-bend in upward dog. Then we moved into the entirety of the Ashtanga practice. Instead of doing floor stretches, we did a bunch of ab work and then moved into some final yin-type stretches. I loved teaching the sequence and it felt right for the class; music was slow and complimentary more than anything else.

So if you come to my classes, except a little flair of Ashtanga. It’s evolving into something pretty cool and I think that someday soon I might help to develop a new series based on the Primary Series. It’s all an evolution 🙂

The Human Body is an Ecosystem (Part 4/5 : Gastro-Intestinal Micro-Organisms)

E.Coli

Part 4: Micro Organisms of the Gut

Please see the other parts of the article; once they are completed the links will be active:

Part 1: anatomy of the human microbiome
Part 2: micro-organisms on the skin
Part 3: micro-organisms in the mouth
Part 5: implications for modern medicine

The increased knowledge of gut bacteria is a an excellent example of a paradigm shift in the health community. The scientific community has obtained an incredible amount of knowledge from this new field of microbiology. The gut flora is sometimes considered an organ because of its importance, this community of micro-organisms is evidenced to protect its host (that’s us) from pathogens and allow us to extract nutrients from our diet.

Your colon contains over 100 trillion micro-organisms most of which are bacteria. It also has the most complex and intricate interactions of the human micro-biome. The flora in the stomach and upper intestine are not as diverse or populous. This “gut” ecosystem is complex with over 400 species (identified genomes) but not quite as numerous as the 1,000 different genomes of skin micro-organisms. This is probably because of the skin’s increased interaction with the environment.

Bacteria populations within the gastrointestinal tract differ greatly depending on the host: geographical location, diet, genetics, even the behaviors of different species are vastly different based on the history of the host. Not surprisingly, diet is probably the largest factor in the populations of bacteria in the gut.

These bacteria have lots of different functions: synthesizing vitamin B and K, nutrient extraction, metabolizing bile acids, sterols, and xenobiotics, defense against pathogens, cell growth stimulation, and response to disease. They are often referred to as the forgotten organ because of the immense role they play in digestion and little attention they have received until more recently.

Gut flora evolve during the course of an individual’s life. These microbiota are non-existent until birth, and mature at the age of 3. Micro-biota are normally associated with nutrient intake, and concentration of communities are indicative of the type of diet of the host. This ecosystem, or microbiome in the gut is essentially your metabolism and what allows your body to breakdown and re-intake nutrients from your food sources. They believe this may be a reason why breastfeeding is important for infants; the nutrients help to form the initial microbiome of the child.

Without these bacterial cells, our bodies wouldn’t be able to breakdown certain nutrients. They also help the gut to maintain efficiency, especially in the colon. The colon has a lower pH level than the rest of the body, preventing harmful bacteria from proliferating and possibly even enhancing the excretion of carcinogens (cancer causing agents).

Gut bacteria have a primary role in nutrient absorption, especially electrolytes, and help the body to control its fat levels. They also help to fight allergens including over-action of the immune system. Some bacteria can even stop inflammation during the digestive process. Some genus’ of bacteria aid cancer growth, while some fight it. There is increasing evidence to suggest that obesity might be caused by bacteria populations and that the two could be intricately related.

The populations of micro-organisms in your gut is not to be under-estimated, we will be learning more about the implications of gut ecology on diet, health, and especially in obesity regulation over the next few decades. This is one of humanity’s primary links to the environment and is essential for optimal immune function. As we learn more about allergies, we will also be learning more about the ecological properties of our own bodies.

The last article in the series should be out soon, stay tuned for the implications this research has on the future of modern medicine. Questions or corrections are always welcome!

Sources:

  1. http://link.springer.com/article/10.1007/s11894-009-0045-z#page-1
  2. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=909284&fileId=S0007114502001782
  3. http://www.sciencemag.org/content/308/5728/1635.short
  4. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1379087/?page=2
  5. http://journals.lww.com/jtrauma/abstract/1987/02000/endotoxin_but_not_malnutrition_promotes_bacterial.12.aspx
  6. http://link.springer.com/chapter/10.1007/978-94-011-2364-8_4#page-1
  7. http://www.ncbi.nlm.nih.gov/books/NBK7670/