The Abdominal Wall and Attraction to Potential Partners

Have you ever been at the gym doing crunches and planks with your buddies and had no idea what you were doing? When you start talking about what you are working out, you are discussing abs, or abdominal exercises. Most often what we are talking about when working out or exercising is the rectus abdominis muscle via crunches and leg ups or even planking. This muscle becomes more visible as body fat percentage lowers and is sought after each New Year by men everywhere, only to remain illusive due to its dietary requirements (it has more to do with body fat with muscular strength). You may think this is the sole perpose for a man’s existence, but it is not.

The abdominal region is far more complex than one muscle. The abdomen, or lower thorax contains severals layers of muscular tissue that interweave to hold your organs in place and keep your spine upright so you can walk. These muscle tissues interweave to form the necessary support for an upright spinal column. I’ll talk more about the “6-pack” rectus abdominis muscle in a moment.

Obliques, Ribs, and Organs

abdominal 2 (GRAY)

The ribs are an often forgotten power center for posture within the body. They contain several muscular connections to bones and tissue around them. They do this to take tension from the spine by using accessory muscles. There is a massive connection between the accessory muscles and the diaphragm. These acessory muscles help us to breathe.

The Three Forgotten Abdominal Muscles

They are the internal and external obliques, which means diagonal and the transverse abdominis These muscles are responsible for the wall of muscle tissue underneath the rectus abdominis. These are all abdominal muscles. Together they muscles support the lower back and the organs of the thorax (chest cavity).

The Pyramidalis muscle, Linea Alba, and Hip Flexors (more forgotten abdominal muscles)

The pyramidalis is another abdominal muscle connects to the pelvis in two places (this is the V at the bottom of the rectus abdominis. It inserts into the linea alba via a pointed connection halfway between the belly button and the pubic bone. The linea alba is the fibrous muscle that runs up the center of the abdomen. It inserts into the diploid process at the bottom of the sternum. The linea alba is compose mostly of white collagen connective tissue. Linea Alba means “white line” in Latin.

The hips flexors and perineum are two more important muscle groups. The muscles create support for the back in concert with the abdominals. The hip flexors, in particular, have a huge amount of interaction with the spine. The hip bones connect the abdominals and the ribs .

Female Type Pelvis
Male Type Pelvis

Back onto the ‘6 Pack Abdominal Muscles”

The rectus abdominis is the top layer of muscle tissue visible and is the most common sought after muscle for looks. It is thought to provide an indication of health for prospective mates, but I wasn’t able to find any evidence for this assertion.

There is a surprisingly giant gap in the research when it comes to research about the attraction of the opposite sex. Statistically speaking, men value physical attractiveness more than women and women value similarities more than physical attraction. If you are overweight, you are more likely to be attracted to overweight members of the opposite sex.

One final, very interesting finding is that men are more attracted to novelty, and women to familiarity (read the article).

More and more evidence is arising that attraction is genetic. First, Behavior does not create homosexuality. It occurs natually and is genetic. Second, in our courtship of partners, we seek similar genetics to our own. Add social influences that help to determine what we find attractive, including fashion, perceptions of success, etc on top of these biological factors. Dive into the research. See for yourself.

Conclusion: Advice for Stretching the Spine

You can see how connected the muscles of the abdomen are with the hip flexors, ribs, spine, and diaphragm and how all of these muscles work together to create posture. All of these muscles are responsible for the health of the spine and in many ways the organ tissue in the thorax (stomach, kidneys, etc). Make sure you stretch your legs and hips to really get your spine mobile and strong!

I’ll do a separate article on the hip flexors next week. And visit again soon! You can subscribe to get an email update every time I publish an article.

References:

  1. Sex Differences in Attraction to Familiar and Unfamiliar Opposite-Sex Faces: Men Prefer Novelty and Women Prefer Familiarity (https://link.springer.com/article/10.1007/s10508-013-0120-2)
  2. On the Fashionable Sexiness in Aesthetics (https://www.ijac.org.uk/images/frontImages/gallery/Vol._3_No._4/2.pdf)

The Sciatic Nerve: A River of Energy Suppyling Human Legs

Sciatic Nerve

The Anatomy of the Sciatic Nerve

By KDS4444 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=53368293

Also known as the ischiadic nerve or ischiatic nerve, the Sciatic Nerve is the largest nerve in the human body. The Sciatic Nerve runs down the leg behind the bicep femoris and powers the thigh muscles.

Gray Sacral Plexus

The nerve begins in the Sacral Plexus 

as you can see from contrasting the above depictions of the nerve. Notice the outer thigh innervation and middle leg innervation from the upper nerves in the second photo. Contrast that to the inner thigh/back-leg innervation from the lower set of nerves. The sciatic nerve is a combination of the nervous tissue from L4 to S3 and continues down the leg to branch into the Tibial Nerve and the Common Peroneal Nerve at the popliteal fossa.

The Sacral Plexus and the Greater Sciatic Foramen

prentice-hall-sacral-plexus

Here is a fantastic depiction of the sacral plexus and the nerve’s points of joining and separation through the Greater Sciatic Foramen which is covered by the piriformis. Here is a great view of the coccyx and sacral plexus which runs down the back of the leg. As the nerve travels, it is hammocked by the piriformis and then the bicep femoris before it branches. You can see a really great example of the support of the bicep femoris below

Posterior-View-of-the-Lower-Limb-Anatomical-Course-of-the-Sciatic-Nerve
Posterior-View-of-the-Lower-Limb

You can also see that as the nerve travels, it branches below the bicep femoris and the popliteal fossa which is also known as the knee pit. The biggest bone in the body, the femur supports and protects the sciatic nerve. We could definitely get into more detail about the branching of the nerve, but for now, let’s stick with the major components, we can get more specialized later.

Implications for your Yoga Practice

  1. If you haven’t started finding ways the stretch the muscles surrounding and supporting the biggest nerve in your body, its time to start. Finding ways to relax and stretch the piriformis and strengthen the sciatic nerve should be one of the primary goals of your practice. A healthy sciatic nerve will be most helpful in maintaining a pain-free leg!
  2. It is necessary to work into the layers of muscles surrounding the nerve tissue to truly release tension from it. This means that although an adjustment from a chiropractor might help in the short-term, you should be focused on re-aligning the leg muscles in your daily posture to create space for the sciatic nerve.
  3. Your hamstrings can be the primary instigator of your back pain! Quadriceps are filthy culprits as well! Find ways to stretch your legs and your back will often carry less tension as a result. And legs stretches can allow you to stretch the back in deeper ways. There are certain points inside of your hip/sacrum connection where your back and your legs are the same thing!
  4. This is a huge reason why downward dog feels so fantastic. You get to stretch the muscles around your biggest nerves! Downward can be one of the most sustainable yoga poses. It shouldn’t hurt! Just uncomfortable at first.
  5. Just to take the downward dog thing further, this is also why sun salutations are such a universal stretches in yoga and so good for relaxing the nervous system. I think sun salutations might be one of the best exercises you can do for your back.

15 Yoga Asanas for your Sciatic Nerve

  1. Hero’s Pose
  2. Downward Dog
  3. Foward Fold
  4. Sun Salutation A
  5. Low Lunge
  6. High Lunge
  7. Pyramid Pose
  8. Warrior 1
  9. Eagle Pose
  10. Triangle Pose
  11. Revolved Triangle Pose
  12. Half-moon
  13. Revolved Half-moon
  14. Half Pigeon
  15. Finishing Ashtanga Streches

References

Foot Reflexology Chart

Movement Shapes Your Body

Foot pain from your spine?

Your Foot Bone’s Connection to your spine

How can I break my Neck in my Foot

Hand Anatomy, Physiology, and Use

"Human-Hands-Front-Back" by Evan-Amos - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Human-Hands-Front-Back.jpg#/media/File:Human-Hands-Front-Back.jpg

The Usefulness of Man’s Hand

The hand is one of the most intricate and useful mechanisms of the entire human body; it is a prehensile (appendage for grasping) that humans share with chimpanzees, lemurs, and monkeys; even Koalas have opposable thumbs that are very similar to the thumbprints of the hands of humans. We humans absolutely have the ability to “think” with our hands; when we consider their connection to the brain we find the hand contributes to our thoughts and feelings. Fingers contain some of the most dense nerve endings on the entire body. The hand is greatest source for tactile feedback on the body and has the greatest impact on the sense of “touch”.

The hand has an intricate connection with the eyes and brain partially because they have the greatest mobility of any part of the human body. Each hand is paired with a dominant opposite side of the brain in the same fashion as the eyes. This “crisscrossing” of neuronal passageways occurs throughout the nervous system. The primary motor cortex is responsible for movement in the hands and body and executes movements in concert with the rest of the motor cortex.

There are 27 bones in the hand. 14 of which are in the fingers. There are 24 muscles groups innervated by various motor and sensory pathways that comprise 3 nerves: the radial, ulnar, and median nerves. These cascade to form 2500 nerve receptors per square centimeter on the surface of each hand.

Bones of the Human Hand

Lets start by looking at the bones. Each finger has three sections of bone: distal (fingertip), middle, and proximal; the thumb has two, theHand Bones middle bone is simply missing in between the top and bottom bones. The proximal bones connect to five metacarpals which connect to the eight carpal bones of the wrist. The fingers have 14 bones, the wrist has 13. The wrist has significantly more ligaments and less sensory nerves and mobility that the fingers. The bones of the hand_bones_detailed wrist are known as the carpal/carpus bones(from the Greek καρπὁς, “carp” means to pluck; an action the wrist performs) and there are eight of them (in order of ossification, or bone tissue growth): Capitate, Hamate, Triquetrum, Lunate, Trapezium, Trapezoid, Scaphoid, and Pisiform. Sometimes the radius and ulna bones are considered a part of the hand because of the role they play in the articulation of the wrist. There are also a large number of sesamoid bones in the hands (named after sesame seeds because they are so small). They are usually found near the thumb and are often formed in response to strain; they act like a pulley system for muscles and ligaments to slide over and spread muscular forces.

Ligaments and Tendons of the Hand and Wrist

In the hand, there are 18 ligaments that are separated into four groups:

  1. The ligaments of the wrist proper which unite the ulna and radius with the carpus: the ulnar and radial collateral ligaments; the palmar and dorsal radiocarpal ligaments; and the palmar ulnocarpal ligament.
  2. The ligaments of the intercarpal articulations which unite the "Braus 1921 201" by Braus, Hermann - Anatomie des Menschen: ein Lehrbuch für Studierende und Ärzte. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Braus_1921_201.png#/media/File:Braus_1921_201.pngcarpal bones with one another: the radiate carpal ligament; the dorsal, palmar, and interosseous intercarpal ligaments; and the pisohamate ligament. (Shown in red in the figure.)
  3. The ligaments of the carpometacarpal articulations which unite the carpal bones with the metacarpal bones: the pisometacarpal ligament and the palmar and dorsal carpometacarpal ligaments. (Shown in green in the figure.)
  4. The ligaments of the intermetacarpal articulations which unite the metacarpal bones: the dorsal, interosseous, and palmar metacarpal ligaments. (Shown in yellow in the figure.)

In the image below, Hand_ligaments you can see how the blood vessels travel between the fingers next to the nerves and the padding of the hand on top of the ligaments used to keep the wrist bones compact as they rotate and move through space. The Ulnar nerve is on the left, near your pinky, and Grays_arm_nervesthe radial nerve is closer to your thumb and is almost entirely dedicated to its innervation and sensitivity. The median nerve is in the middle and acts as what is probably the primary sensory nerve. This nerve innervates your pointer finger and middle finger, which are your primary fingers for tactile sensing. There is a depiction from Gray’s anatomy on the right that shows how the three nerves flow through the arm down to the fingers.

The Hand’s Muscles Groups

I could probably write an article on each of the finger muscles exclusively. Bear with me as we go through these muscles groups. The muscles of the hand are some of the most sensitive and finely tuned muscles in the body. They are normally separated into two categories: extrinsic and intrinsic. Extrinsic muscles have their muscle belly (the majority of muscles fibers) on the forearm.

The intrinsic muscle groups are the thenar (thumb: Abductor pollicis brevis abductsFlexor pollicis brevisOpponens pollicis) and hypothenar (little finger) muscles; the interossei muscles originatingHand_muscles2 between the metacarpal bones; and the lumbrical muscles arising from the deep flexor digitorum profundus muscles (and are special because they have no bony origin) to insert on the dorsal extensor hood mechanism.

The fingers have two long flexors located on the underside of the forearm. The deep flexor attached to the distal phalanx (farthest) and the superficial flexor attaches to the middle phalanx. These are what allows your fingers to bend. The thumb also has two flexors, one long and one short and these work together with the thenar muscles to allow the thumb to grasp. The thumb is quite a complex mechanism in and of itself; kinda makes me want to write an article on it.

The extensors on the top of the forearm arrange in an even more complex way. The tendons unite with the lumbrical and interrossus muscles to form the extensorhood mechanism. The extensors straighten the digits. The thumb has two extensors on the forearm which form the anatomical snuff-box, or the triad at the base of your thumb. The pointer finger and little finger both have an extra extensor for pointing.

The Skin of the Hand

The skin of the hairless side of the hand (palm) is very thick and can be bent easily while maintaining connection with the muscles and bones of the hand. Palm skin is usually lighter because of inhibited melanin (skin pigment) production and therefore don’t tan. Fingerprints, or the papillary ridges exist to increase friction when the hand is grasping an object. The skin of the top of the hand is soft and pliable to allow the fingers to recoil quickly.

Conclusion

The hand is complicated, especially in terms of muscular innervation, but we are still learning enormous amounts about how they have evolved into their current state. Comparative physiology is very useful for this and we are constantly exploring more about ourselves through animals and our genetic ancestors. If you have any requests for articles, or interesting additions to this one, please ask. Feel free to add anything that I have missed, or to ask any questions in the comments.

sources (besides Wikipedia):
1. http://www.oandplibrary.org/al/pdf/1955_02_022.pdf (Craig L. Taylor PHD & Robert J Schwartz, MD)
2. http://www.aofas.org/footcaremd/conditions/ailments-of-the-big-toe/Pages/Sesamoiditis.aspx
3. https://ispub.com/IJFS/1/2/9047#sthash.lchtoImt.dpbs

Anatomy of the Lower Back

hip_musculature_spinal_support

(Part 1 of 2: Muscular Skeletal System)

If you have practiced yoga lately, chances are that you sat on the floor for a little while. This is a very healthy activity that every human should probably practice regularly for the strength of the pelvic floor muscles, and to allow the inner thighs and hips to relax. You can always work your way into it with blocks, props, cushions, pillows; you can do it while watching TV. It is good for releasing the muscles in the lower spine which have a strong connection with the hips, pelvic floor, abdominal muscles, lower back, and lower organs, including the sex organs and excretion organs; it’s good for all that important stuff.

In this article, I will speak specifically about the lower back and the anatomical features that you will want to be aware of as you practice yoga. If you have any of the following symptoms, you may want to begin a restorative yoga practice to assist in the alleviation of your pain, as well as begin to sit on the floor regularly. If it is too painful to start, contact a specialist or something like that, here are some symptoms of dysfunction:

  • Pain and stiffness in the back.
  • Pain in the buttocks and the legs, often in the back of the thigh.
  • Pain that worsens when bending, stretching, coughing, or sneezing.
  • Sciatic Nerve pain (pain in the hips, or back of your legs that shoots down the leg)

The lower back is really composed of three areas of the body: the lower spine, the hips and tailbone, and the abdomen. Since the spine is encircled by musculature, the abdomen, spinal muscles, and hips are all integral aspect of maintaining a healthy lower spine and therefore lower back.

Here is a depiction of the skeletal frame with the lower back in red: lumbar_region from wikipedia

You can see the there is a lot of big bone support at the base of the spine you will know from your own body that your hips provide the support for the lower spine. The ribs and upper legs have a tremendous amount of connection with the lumbar region of the spine and are the primary support structures in providing space for the lower back and lowest organs. Here is a very detailed depictions of the inner hips muscles and lower spine: hip_musculature_spinal_support

This is a depiction of the primarily of the psoas muscles and illiacus muscles. The psoas is a primary muscle group that moves the trunk Gray's Quadratus Lombrumand is greatly affected by sitting habits. It lines the font of the spine and inserts separately into each vertebral process up to the T12 in most people. The illacus muscles line the insides of the hips and connect with the psoas at the insertion point of the lesser trochanter of the femur. Both the psoas and the QL run along the lumbar spine to the trunk, the QL going posterior to the spine and the psoas anterior to the spine, bone are connected to the transverse spinal processes. The muscles work together to move the trunk, along with the muscles of the abdomen. The psoas and the QL muscles are the primary muscles of the lower back, so we’ll come back to them.

There are a few more groups of muscles to pay attention to, but other primary muscle group to consider when talking about the lower back is the abdominals. Your abdominals provide frontal support for the spine, but in addition to the abdomen and primary lower back muscles of the Psoas and Quadratus Lumborum, the diaphragm, obliques, serratus muscles, pyramidalis muscles, levatores costarum, subcostal muscles, transverse thoracis muscles, and intercostal muscles play roles in the alignment of the lower spine. The final, possibly most under looked muscle is the latimus dorsi, which runs all the way along the back of the spine up to the shoulders. We can go over most of them as accessory breathing muscles, which is an action largely affected by the lower spine. It sounds like a lot of muscles because there are lots of muscles that are connected to your lower back. Let’s break it into pieces to see how it works.

Lets start at the top and work out way down the body, so lets start with the shoulders. The serratus muscles, obliques, levatores costarum, costal muscles and subcostal muscles all play a role in spinal alignment at the shoulder level. The subcostal muscles are the subcostal_muscles_ depictioninnermost, being inside of the rib cage, and surrounds the diaphragm along the ribs. The intercostal muscles are just superior, or further outside than the subcostal muscles. The levatores costarum run along the back of the spine on the outside of the rib cage, "Levatores costarum" by Uwe Gille - modified from Image:Gray389.png. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Levatores_costarum.png#/media/File:Levatores_costarum.pngproviding even more support for the spine, which you can see act in opposition to the interlacing rib muscles. Notice the spinal erectors and spinalis muscle groups. You can also see how the muscles interweave with the spine and ribs, making breathing a full body movement. This is why forward folds are so effective at releasing the muscles the support the spine, so that they can stretch and relieve tension. This part of the reason why breathing in yoga can help to align the spine, and why spinal alignment and breathing have a close relationship. The obliques are a portion of the abdomen that you can read more about here. The serratus anterior is the another muscle to consider, which is also known as the punching muscle, as it pulls the shoulder blades forward. This is an extremely strong and useful muscle in yoga that supports you in handstands, forearm stands, and headstands in specific variations with proper alignments. and keeps the shoulders aligned, which then keeps the spine aligned. Like links on a chain. The final muscles to look at is theLatissimus_dorsi latimus dorsi, a muscle that runs from the lower back to the outside of the shoulder blades. The muscle connects the arms to the lower back, so can be really important for golfing, blowing, javelin throwing, or boxing. Anything where you are using your hips to power the upper body. These muscles can be easily overlooked in sun salutations, especially downward dog, which can allow the spine to hyperextend. This muscle is also more active in the elbow close push up, allowing the serratus anterior and lats to move the spine up from chaturanga into downward dog. Hollowing your armpits in plank/chaturanga/down-dog will likely activate and strengthen your lats, but its good to have a second pair of eyes on your alignment, so if you have questions find a local studio or teacher and ask them about your down dog. I’m sure they will be thrilled to answer your questions.

The last muscles to consider are the diaphragm, the obliques, the

Diaphragm
Diaphragm

pyramidalis muscles, and the transverse abdominus. The final piece of the puzzle is the rectus abdominus, which acts in direct opposition to the Psoas and QL muscles. The pyramidalis muscles are tiny triangles below the lowest layer of the rectus abdominus, and they form muscles just above the genitals. The diaphragm forms the inner musculature needed to move the ribs as the lungs expand.

abdomen image from http://www.usra.ca/The obliques line the outsides of the torso at the bottom of the rib cage, and all four layers of abdominals meet at the linea alba and run down to the pyramidalis muscles. You can see the lowest layer of the abdominals, the transverse abdominus, which acts as a kind of weight belt to support the lower spine when heavy lifting with the back, or squatting. It works with the psoas and QL to keep the trunk stable. The rectus abdominus acts in opposition to the QL and psoas, which forms a kind of push-pull system for you to lean forward and back, to squat, and to jump. Think of them as working against each other, but really they work in unison to support your spine. A great way to feel all of these muscles is to do burpees and/or sun salutations.

That wraps up the muscular and skeletal portions of the anatomy of the lower back. Please check back in about a week for the second section where I discuss nerves, organs, blood vessels, and fluid distribution, and if you are looking for something a bit more entertaining, you can check out the WANDERER series, I am working on part 13 right now and should have it out in a few days. Thanks for reading, would love to hear any questions or feedback

 

Keeping Knees safe in Hip Openers

leg_lateral_musculature

Over the past few months, I have been working diligently toward lotus pose. This has led me to some very stark realizations about how the knees need to be protected while opening the hips, at least for those of us with tight hips. This is an anatomy article geared at learning how to appropriately safely stretch with the ligaments of the knees, and how the opening of your hips is largely affected by your feet.

anterior_leg
anterior_leg

We can start with an overview of the anatomy of the outside of the leg. Lets start at the bottom and work our way up.

lateral_ankle_anatomy
lateral_ankle_anatomy

There are a few major tendons in the ankle that need to be protected while opening the hip. If these tendons are not flexed during the stretching of the hips, stress will accumulate in the lateral portion of the knee, specifically in the lateral meniscus and the lateral collateral ligament.

Now we know the basic ligaments of the ankle and the outside of the knee that are being affected. Now let’s talk about the fibula, one of the most slender bones in the body.

lateral_ankle_ligaments
lateral_ankle_ligaments

There is a tremendous amount of connective ligamentation on the outsides of the ankles, especially back towards the calcaneus where there are three ligaments to stabilize the ankle on the heel. The heel is a crucial point of stress when the hip is being opened and right on the lateral portion, or outside of the heel is where the most important flexion lies for the opening of the hips. This activation, which should continue up through the plantar and dorsal ligaments to the pinky toe of the foot. This will keep the ankle safe and properly aligned to allow the hip to open while the knee opens laterally.

Once the fibula is aligned properly, the outer knee ligaments and inner cushions can do their job and keep the interior knee ligaments from over stretching. You can see a great view of the knee’s mixture of interior and exterior ligamentation, which in reality overlap and interweave.

http://classroom.sdmesa.edu/eschmid/F07.11.L.150.jpg
knee ligamentation

The fibular collateral ligament is the most important ligament on the outside of the knee and is a thin sheath. This is the ligament that you really want to keep safe and relaxed while stretching the hip, which will ensure that the meniscus is not over-stressed. If it is, the ACL and PCL, the interior crossing ligaments of the knee could be overextended. Also keep in mind the moving the stretch further back into the hip will take time, so be patient with your bodies process. After all, yoga is all process, there is no completed pose or perfect posture. There are always possible improvements, different variations, alternate alignments.

Let’s move up into the thigh, and where you should be feeling the stretch. The IT band is a completely necessary activation, but it is really controlled by the flexion of the outer portion of the foot.

posterior_leg
posterior_leg

 

You can see here the muscles that should be receiving the stretch while the hips are externally rotated. The gluteus minimus, piriformis, gemellus muscles, obturator muscles, adductors, and quadratus femoris muscles. The medial gluteus also twists and stretches fairly significantly. There are also a lot of muscles at the front of the thighs that are receiving significant stress from the hip opening postures.

The Satorius muscle, Vastus Lateralis, and Tensor Fascia Latae stabilize the outsides of the knee. The pectineus and adductor longus muscles, adductor magnus, and gracilis muscles.

anterior_thigh_muscles
anterior_thigh_muscles

Armed with this information, you can now see how the foot and ankle have intricate connections all the way up the leg. Keeping the knee stable while opening the hip will allow you to practice more often, with less stress on our knees, something that I think we could all use a little bit less of. In addition, this article should allow you to know how the muscles that open your hip are stretched during external rotation. Any questions are greatly appreciated.

The Respiratory System

Anatomy of Lungs and Respiration

There is one thing you have done every moment of your life. Even before you can remember. This will be the last thing you do before you die. And your awareness of this thing will partially determine how you exist on planet Earth. Prana, or your breath, is the primary mover on life in your body and corresponds deeply to your mental and physical health.

Humans have two lungs and five lobes, two on the left and three on the right (the right is bigger), each of which can be from 70-100 square meters in surface area, about the same surface area as a tennis court. The lungs have 2,400 kilometers of airways and 300 to 500 million alveoli which are gas exchange points for the bloodstream. These are powerful organs of exchange with the environment, with power and functioning that should not be taken for granted.

The respiratory system is a series of organs responsible for intaking oxygen from the atmosphere and expelling carbon dioxide back into the air. This basic gas exchange between the body and the atmosphere is completely dependent upon the respiratory system and almost every vertebrate animal has one. This exchange affects every other system, as they oxygenation of blood is necessary in every organ. The nervous system also seems to draw energy from the respiratory system, and the cardiovascular system takes cues from the respiratory system (both cue off brain activity) to determine how much blood it should be pumping based on breath rate. When the sympathetic nervous system becomes active (the flight or fight mechanism), heart rate is increased, respiratory rate is increased, the sensitivity of the nervous system is heightened to allow for survival, but this comes at a cost.

Yoga focuses primarily on the respiratory system’s functioning to move the muscular-skeletal system in the opposite way. In our modern world full of non-environmental stress and high levels of adrenaline in non-life threatening situations, the sympathetic nervous system is overactive and is probably the biggest contributor to the high fatality rates from cardiovascular disease (nutrition would be the other competing contributor). The respiratory system is vital to the functioning of every mammal on the planet and is one of the most intricate and powerful tools for surviving, prospering, and thriving on planet Earth.

LadyofHatsJmarchn – Own work using: Sobotta, Johannes (1982) Atlas der Anatomie des Menschen / 2 Brust, Bauch, Becken, untere Extremitäten, Haut. (18th ed.), Munich: Urban & Schwarzenberg ISBN3-541-02828-9OCLC260005032. Gray, Henry (1980) Gray’s Anatomy(36th ed.), Edinburgh: Churchill Livingstone ISBN0-443-01505-8OCLC7775214. Yokochi, Chihiro (1991) Atlas fotográfico de anatomía del cuerpo humano (3rd ed.), Mexico: Interamericana/McGraw-Hill ISBN968-25-1677-3OCLC33318149. Also used several online diagrams like:[1] [2]

I honestly think the vast majority of people take breathing for granted. Most Americans are in such a rush that they don’t even notice their superpower of consciousness. We don’t learn about breathing in school, or in early sports, which is really a shame because breathing concentration allow for intense amounts of focus. Every athlete should learn breath control techniques from young ages; I can remember when I learned to run with proper form at 15 and I think that learning about breathing should happen even younger. This is what keeps us all alive, after all, and we really should learn how to keep our nervous systems functioning optimally through breathing exercises.

To really understand how intricately related the nervous system and respiratory systems are, we need to go back in time to when you were born. At birth, a babies lungs are full of fluid, but once the child is released from the birth canal, the central nervous system trigger a huge change in reaction to the environment, which then triggers the first breath, about 10 seconds later. From there, the lungs develop rapidly until at about 2, the alveoli are fully developed, then the lungs begin to grow normally until full adult muscular maturity is reached. The lungs are muscular and most mammals use their musculoskeletal systems to support their breathing, as humans do. This is why yoga can alleviate many hampering disabilities having to do with lung functioning, because strengthening the accessory muscles to the diaphragm strengthens the overall functionality of the respiratory system.

The muscles of the respiratory system are the following:
  • the diaphragm (primary)
  • the external intercostals
  • the internal intercostals (intercostals interlace on the inside and outside of the ribs).
The accessory muscles are:
External-and-Internal-Intercostals-of-the-Thoracic-Cage

As you can see, there are a tremendous amount of accessory muscles involved in breathing. I interpret this a particular way, that there is an enormous spectrum between thriving and breathing with ease and freedom contrasted to breathing for survival, or breathing only with the diaphragm and ribs, which puts extreme amounts of stress on those muscles. I think the idea of balance between the primary and accessory muscles is the right idea, and the stronger the accessory muscles, the more powerful breathing will follow. This takes time, muscles build strength in increments, and this is probably the biggest reason why yoga is so difficult for many Americans. Because we need it the most!

Questions

  1. What kinds of breathing exercises do you practice for optimal health?
  2. What kinds of breathing exercises would you like to learn about?
  3. Do you find that breathing affects your mental health?
  4. Do you find time to meditate on your breathe during the day?

References

  1. Teach Me Anatomy – Thorax
  2. Wikipedia – Respiratory System

Anatomy of your Tongue

The tongue is a muscular hydrostat (hydraulically powered food grabber in the same class as an elephant trunk, snake tongue, or octopus arms) with no support that acts as the organ for taste, or gustation. It lies the floors of the mouth of vertebrates and moves to manipulate nutrition for digestion and mastication (chewing).  It maintains constant pressure and is made of three directions of muscles and blood vessels to supply nerves and blood vessels. Many cultures also use the tongue phonetically, for specific communication (whistling, growling, kissing), or for cleaning the teeth and mouth.

There is a significant amount of musculature connecting the tongue tongue_musclesto the mouth. There are eight muscles in the tongue region, classified into intrinsic or extrinsic. The four intrinsic muscles change the shape of the tongue and are unattached to bone, while the four extrinsic muscles change the position of the tongue and are anchored to bone.

The extrinsic muscles are the hyoglossus, genioglossus, styloglossus,Gray_tongue_intrinsic palatoglossus that allow the tongue to extend outwards, retract, and move side to side. The intrinsic muscles of the tongue all originate and insert within the tongue. These muscles shape the tongue by lengthening and shortening, curling and uncurling, and flattening and rounding the surface. These muscles facilitate speech, swallowing, eating, and provides for the shape of the tongue. The average length of the tongue is about 10cm.tongue_arteries

The tongue receives blood through the lingual arteries, all of which drain into the internal jugular vein. The tongue is innervated by several nerves which carry the sensation of taste to the brain. The chorda tympani, the lingual nerve, the trigeminal nerve, and the glossopharyngeal carry the nervous information to the brain. The chorda tympani is particularly interesting, because it also innervates the muscles of the face, meaning there is likely a strong connection between facial expression and the sensation of taste and similarly, the trigeminal nerve is responsible for sensation in the face and the motor functions of biting and chewing. Together, these nerves create the highly specific feedback loop that ends up as the sensation of taste in the brain.

The tongue is covered with numerous taste buds, however, the sensations of different tastes are not localized to specific areas of the tongue. This was disproven and all taste sensations come from different parts of the tongue, though certain regions can be more sensitive to certain flavors. The different taste buds are filiform papillae, fungiform papillae, vallate papillae, and foliate papillae.

The taste receptors function by waiting for stimulus chemical to interpret, called tastants. Once a tastant has dissolved in saliva, it makes contact with the plasma membrane of the gustatory hairs, which are the site of transduction (conversion of one stimuli to integrate into the nervous system). The tongue is equipped with mostly taste buds on its dorsal (upward facing) surface, to sense the five different kinds of taste: umami, sweet, sour, bitter, and salty. Umami is currently the most researched and debated of the five kinds of taste.

Fungiform papillae, vallate papillae, and foliate papillae are the most associated with taste, while the filiform papillae is far more associated with increasing surface area of the tongue and to increase the friction between the tongue and food.

Bacteria builds up easily on the tongue and is the second most vulnerable soft tissue to pathogens, next to the gums. Tongue scraping can assist with removing debris and bacteria from the surface of the tongue. This can also be done with a brush, but I think that both are extremely useful for keeping the oral cavity clear of pathogens and potential disease. Most vertebrate animals have and use tongues, some are specifically adapted to catching prey, or to clean and groom fur, clear nostrils, or to regulate heat in the case of a dog. The tongue is an organ that has evolved over a long period of time and is extremely useful for animals that live above the sea-level.

That does it for the tongue, this will lead into the final bandha article, Jihva bandha, so check back soon to see more details about how to use the tongue while practicing. Talk to you soon!